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Abstract: With the rapid development of mobile communication and the sharp increase of smart
mobile devices, wireless data traffic has experienced explosive growth in recent years, thus injecting
tremendous traffic into the network. Fog Radio Access Network (F-RAN) is a promising wireless
network architecture to accommodate the fast growing data traffic and improve the performance
of network service. By deploying content caching in F-RAN, fast and repeatable data access can be
achieved, which reduces network traffic and transmission latency. Due to the capacity limit of caches,
it is essential to predict the popularity of the content and pre-cache them in edge nodes. In general,
the classic prediction approaches require the gathering of users’ personal information at a central
unit, giving rise to users’ privacy issues. In this paper, we propose an intelligent F-RANs framework
based on federated learning (FL), which does not require gathering user data centrally on the server
for training, so it can effectively ensure the privacy of users. In the work, federated learning is
applied to user demand prediction, which can accurately predict the content popularity distribution
in the network. In addition, to minimize the total traffic cost of the network in consideration of user
content requests, we address the allocation of storage resources and content placement in the network
as an integrated model and formulate it as an Integer Linear Programming (ILP) problem. Due
to the high computational complexity of the ILP problem, two heuristic algorithms are designed
to solve it. Simulation results show that the performance of our proposed algorithm is close to
the optimal solution.

Keywords: fog radio access network; content placement; storage allocation; federated learning

1. Introduction

Recently, the increasing popularity of intelligent devices such as wearable devices,
smartphones and sensors in our daily life has triggered a surge in many distributed
network devices, which results in massive amounts of heterogeneous data that need to
be processed [1–3]. Due to such unprecedented amount of data with exponential growth
trend [4], it becomes impractical to send all data to a remote cloud computing center for
processing and is full of privacy issues [2]. In addition, some applications and services rely
heavily on high-speed data rates and low latency transmission, which prompts the mobile
network operators to rethink current network architectures and seek more complex and
advanced technologies to bring content closer to end users with low latency and cost.

To satisfy the diverse multi-dimensional requirements of quality of service (QoS),
such as low-latency transmission, enhanced broadband and ultra-reliability, a fog radio
access network paradigm has been proposed as a promising evolution path for the future
wireless network architecture [5,6]. By integrating fog computing into wireless networks,
it enables the distribution of cloud computing power to the edge of the network, enabling
context-aware services and applications to approach mobile users. With this location, fog
devices provide a unique opportunity not only to implement edge caching, but also to

Sensors 2021, 21, 215. https://doi.org/10.3390/s21010215 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5762-1516
https://orcid.org/0000-0003-2968-9561
https://doi.org/10.3390/s21010215
https://doi.org/10.3390/s21010215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21010215
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/1/215?type=check_update&version=2


Sensors 2021, 21, 215 2 of 20

perform edge processing. Therefore, we can intuitively use fog computing resources to
design a new intelligent content caching and distribution mechanism, which are more
flexible and can meet the QoS requirements of various application scenarios.

Due to the limited storage capacity of edge nodes, the network performance can be
effectively improved by predicting the content popularity and actively caching the most
popular one. However, most existing caching schemes are designed for highly controlled
environments where users need to upload local private data to a central server, which
may pose privacy and security risks [7]. Furthermore, with the increase of the number
of users and data, the unreliability and communication cost of wireless networks cannot
be ignored. Therefore, it is necessary to study a new network architecture with low
communication cost and high reliability. To improve the caching performance of the edge
network, a federated learning framework [1,2,8,9] is introduced to effectively predict
the distribution of content popularity in the network. As a data-level distributed learning
paradigm, federated learning is seen as a promising approach to generate high-quality
models without having to collect all the local data at the server [10]. In the federated
learning framework, each client trains its model based on the local data, and updates
the global model accordingly by uploading the results of the training to the fog server.
The fog server then returns the improved global parameters to user so that a new round of
local training can begin. Finally, through model-level collaboration between the client and
server, an accurate learning model can be generated. The core benefit of federated learning
is to spread content over a large number of devices rather than having to centralize training
data [11,12]. By applying federated learning to demand prediction problems, the users
preference can be accurately predicted [13]. The realization of federated learning requires
network edge devices to have powerful computing capabilities and flexible collaboration.
Due to the sufficient fog computing resources, the F-RANs paradigm can fully support this.

The rapid increase in mobile data traffic places a heavy burden on the fronthaul link
which connects fog servers to remote cloud centers. By caching content at a fog server,
the content delivery rate can be improved, the cost of network traffic transmission can
be reduced [14] and the quality of data transmission can be guaranteed. When a user
requests content, the fog server that caches the content can provide the data directly, rather
than fetching the content from a remote cloud computing center. Therefore, how to place
the content on which caches nodes in the network is critical. Furthermore, caching perfor-
mance is highly correlated with the capacity of storage. If the fog server is allocated with
less storage, only a limited amount of content can be cached, which can result in a lower
quality of service than larger cache storage. Therefore, to maximize the use of storage
resources, an effective caching strategy must be designed to distribute storage across differ-
ent network cache nodes, and storage resource allocation determines how many storages
should be allocated to each fog server.

In this paper, we investigate jointly optimizing storage resource allocation and content
placement in a caching enabled hierarchical F-RAN architecture, with the goal of mini-
mizing network traffic costs. Moreover, considering users’ content requests and privacy
security, we adopt a federated learning to make distributed prediction of user preferences
in different F-APs and apply it to the design of cache policy. The proposed caching scheme
can effectively improve the performance of network content caching.

The rest of this paper is organized as follows. We review related work in Section 2.
The system model is described in Section 3. In Section 4, we describe the formulation of our
optimization problem. A solution is provided in Section 5. Simulation results are discussed
in Section 6, and the Conclusion and Future Work are drawn in Section 7.

2. Related Work

The core idea of F-RANs is to make full use of the rich computing resources, data
sharing and storage capabilities of edge devices. Edge caching between Fog-computing
Access points (F-APs) can bring content closer to mobile users, which effectively improves
content delivery rate and reduces the heavy burden of link transmission.
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Currently, some contributions focused on designing edge caching schemes or algo-
rithms to improve the performance of F-RANs. The work of [15] summarized the latest
progress in F-RANs performance analysis, which introduces advanced edge caching and
adaptive model selection schemes to improve the spectrum and energy efficiency of F-
RANs. Effective caching strategies for F-RAN was given in [16] where F-RAN refers
to the cloud radio access network (C-RAN) architecture that utilizes distributed edge
caching techniques [6,17]. The work of [18] discussed the impact of mobile social networks
on the performance of F-RANs edge caching schemes from a perspective of users’ social re-
lationships. The work of [19] make use of social information and edge computing to reduce
the end-to-end delay effectively, and the network content caching, mobility management
and wireless access control has been studied. Although some researches have been done on
caching in F-RAN, there are few researches on the joint optimization of resource allocation
and content placement in networks. In this paper, we focus on the optimization of joint
content caching and resource allocation in the F-RAN architectures to further improve
the caching performance of F-RANs.

Due to the limited storage capacity of edge devices, the content which is most likely to
be requested by the user must be placed at the local fog server. The traditional cache mech-
anism updates the cache content based on static rules such as first in first out (FIFO) [20],
least recently used (LRU) [21] and least frequently used (LFU) [22]. However, the pop-
ularity of content in the network changes over time, making this approach impractical.
Currently, many researches focused on developing of dynamic caching schemes based
on content popularity. The works of [23–25] modeled the caching problem as a Multi-
Arm Bandit (MAB) problem, and indirectly obtained the content popularity distribution
according to the cumulative request rate of all content. However, since the content pop-
ularity prediction process requires online cache training for all content, the prediction is
not real-time and computationally complex. The work of [26] modeled the content popu-
larity prediction problem as a Contextual Multi-Arm Bandit (CMAB) problem. In order
to improve the accuracy of prediction, the scene information of all requesting users is
partitioned, and the online prediction method similar to literature [23] is used in different
scene partitions. Although the prediction accuracy has improved, it has not improved
in terms of real-time prediction and computational complexity. The work of [27,28] used
Alternating Direction Method of Multipliers (ADMM) algorithm to found highly popular
content for caching through dynamic iteration. However, due to the prediction of content
popularity in dynamic calculation, the cache timeliness cannot be guaranteed.

In addition, due to the dynamic nature of content and the mobility of user, the con-
tent popularity in the unit changes dynamically over time. Therefore, many studies use
machine learning to learn content popularity by observing users’ historical content needs.
Bastug et al. [29] proposed a small cellular network caching algorithm based on Collabora-
tive Filtering (CF). However, CF algorithm has high computational complexity and is prone
to cold-start when the data is sparse, which will affect the accuracy of content popularity
prediction. The work of [30] proposed an active content caching mechanism based on
transfer learning (TL), which was to minimize the content transmission cost of the system.
It solves the problem of data sparseness, but if the similar content is migrated improperly,
it will make the prediction accuracy worse. The work of [31] proposed using the Extreme
Learning Machine (ELM) algorithm to build a model of the relationship between content
features and user request information, and a random approximation algorithm is used for
content feature selection design to improve the performance of the ELM algorithm. Finally,
a trained model is used to predict future content popularity. However, the prediction
algorithm cannot track the change of content popularity, and the algorithm accuracy still
needs to be further improved.

Since most machine learning methods require the collection of individual user in-
formation at a central unit, which may cause privacy concerns for users. Local users
have difficulty trusting the servers and are reluctant to upload their private data. In this
context, federated learning as a distributed machine learning framework can effectively
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address this problem. It can perform the learning process from the data spread across mul-
tiple users, thus protecting sensitive data. Applying the federated learning framework to
the demand predicting problem can effectively predict the distribution of network content
popularity [32,33]. The performance comparison of content popularity prediction methods
is provided in Table 1, and the main contributions of this paper are as follows:

• We jointly considered storage resource allocation and content placement in the net-
work to formulate an optimization problem to minimize the network traffic cost.

• Due to the dynamic change of content popularity in the network, the federated learn-
ing framework is applied to predict the content popularity accurately in the region to
develop an efficient content caching strategy. To the best of our knowledge, the prob-
lem of federated learning-based joint content placement and storage allocation has
not been well studied in previous works.

• Two heuristic algorithms are proposed, and the experimental results based on real-
worlds datasets verify the performance superiority of our proposed algorithm.

Table 1. Performance Comparison.

Related Work [23–25] [26] [27,28] [29] [30] [31] This Work

Online/Offline-Learning Online Online Online Offline Offline Offline Online

High Computational Yes Yes Yes Yes No Yes No

Accuracy No Yes Yes No No No Yes

Real-Time No No No No No No Yes

Privacy Protection No No No No No No Yes

3. System Model

In this section, we first introduce a cache-enable F-RAN architecture and design
a federated learning framework in F-RANs. Next, the content cache process is presented
in details. Finally, the problem of content popularity prediction is formulated. Some key
parameters are listed in Table 2.
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Table 2. Key Parameters.

Notation Definition

N Set of F-APs

N Number of F-APs

U Set of mobile users

U Number of mobile users

C Storage budget of F-APs

F Library of popular contents

F Total number of contents

s f Size of content f

p f Global content popularity

β The skewness factor of Zipf

Pn f Local content popularity

cn The storage capacity of F-AP n

X A binary content cache matrix

xn f Content cache decisions

∆u Local dataset

α Learning rate

wu(t) Local parameter vector

W1,W2,W3 The traffic cost of wireless link, Fog-Fog link and fronthaul link, respectively

3.1. System Architecture

An illustrative network architecture of F-RANs is shown in Figure 1. We consider
a cache-enabled F-RAN architecture that contains N F-APs which is equipped with the fog
computing server (denoted as a set N = 1, 2, . . . , N) and U mobile users (denoted as a set
U = 1, 2, . . . , U ). F-APs exchange data with the cloud computing center through fronthaul
links, and F-APs can communicate with each other and with a Cache Manager (CM) via
X2 interface [5], to achieve content sharing. F-APs communicate with the users through
wireless channels. We assume that each user can only download the requested content
from the F-AP which is associated with it. Moreover, we consider allocating a certain
amount of storage for each F-APs in the network, and the total caches of F-APs cannot
exceed the upper limit C of the storage budget which is specified by the mobile network
operator. CM can monitor all user-generated content requests [31] and is responsible for:

(1) Retrieve user’s requested content from the cloud computing server;
(2) Maintain an index table for storing cached content locations in the network;
(3) Forward the user’s content request to the neighboring F-APs that cache the content;
(4) Collect information about the requested content in F-APs;
(5) Decide when to update the entire content cache of F-APs, which can be refreshed at

specific intervals or when content popularity changes significantly.

In the above-mentioned federated learning framework of F-RANs, each user can
train a local model based on their own data, and then aggregate the local model at the fog
computing server. The learning model is trained through the interaction between the fog
computing server and the user until the model converges to a specific level of accuracy.
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Figure 1. Federated learning paradigms in F-RANs.

3.2. Caching Process

The mobile user connects a F-APs, and the connected F-AP is responsible for serving
the user’s content requests. If a requested content is in the cache of the connected F-AP,
the request is served immediately with no additional load placed on the fronthaul link,
which reduces network traffic. On the other hand, if the F-AP does not cache the content
requested by a local user, the request is forwarded to CM. The CM checks whether the con-
tents requested in the lookup table are cached in neighbor F-APs. If the content is cached
in the neighbor F-APs, CM will perform all necessary signaling to retrieve the content
from the neighbor F-APs. Content provided by neighbor F-APs incurs lower downloading
latency and reduces network traffic. Finally, if CM cannot find the requested content in any
cache, it forwards the request to the remote cloud computing center for the content. Since
dividing the content into small pieces and caching them at different levels will increase
the complexity of the system, thus we assume that each piece of data is indivisible and can
be cached on a F-AP as a whole.

Given the dynamic nature of network traffic, the content cached in the fog server
should be updated regularly (e.g., an hour). At the beginning of each period, CM first
optimizes content caching decisions and storage allocation strategies. If the reoptimization
strategy is different from the previous phase, the cache can be updated and the cache
storage can be reallocated accordingly.

3.3. Content Popularity

The set of popular content libraries requested by users in the network is represented as
F = {1, 2, . . . , F}, and the average size of content is expressed as s f . The status information
from all users and each user requested content is defined as follows.

3.3.1. Global Content Popularity

The global content popularity in the network is defined as Pf , which represents
the probability distribution of content requested by all mobile users in the system. The pop-
ularity of the f -th content can be calculated as the ratio of the number of requests for f
content to the number of requests for all content in the network. The common preferences
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of all users in the network can be expressed by the global content popularity, which usually
follows a Zipf distribution model [34,35]:

Pf =
( f )−β

F
∑

j=1
(j)−β

, ∀ f ∈ F (1)

where β is the skewness factor. The higher the value of β, the higher the number of requests
concentrated on a few (popular) contents.

3.3.2. Federated Learning Prediction

Due to different content preferences in different F-APs, and the probability that users
from F-AP n requesting content f is defined as Pn f . User preferences can be predicted
in advance or on a regular basis (e.g., hourly, daily, or weekly) through systematic learning
and analysis of user social behavior [36,37]. In this paper, considering the privacy security
of users, we adopt the federated learning method [7] to accurately predict the content
popularity in the region.

As shown in Figure 2, the federated learning framework includes the user’s device,
which is responsible for local data training and uploading updates to the fog server.
In general, the datasets used for local model training are generated based on the user’s
device usage, such as the user’s web browsing and video playing in daily life. Different
time and place, different activities, and even different types of mobile devices [26] may
cause users to request different content. Therefore, the historical request information
of users under different circumstances constitutes a part of the local training dataset.
On the fog server, the global learning model is improved by merging and aggregating
the local model updated from the user’s device. Finally, the fog server sends the improved
model parameters back to the client, and this step is termed as a round of communication.
The details of our designed FL communication process consist of the following steps:
1© Model Download:

As shown in Figure 2, step 1©, a set of users U are selected to participate in FL training
for the t-th communication round. The selected users then download the global model
from the fog computing server and train the model with their own local data. Therefore,
they download the parameters wu of the global model from the fog computing server.
2© Local Model Training:

The second step in our proposed FL is to train the model by utilizing local data at
user devices, as shown in Figure 2, step 2©. And at each round of algorithm iteration of t,
the users participating in the training process are a subset of the entire user set. Each user
u involved in the training process and updates its local parameter vector wu(t), implicitly
built on the basis of its local dataset ∆u, in accordance with the following rule [2]:

wu(t) = ŵu(t− 1)− α∇Fu(ŵu(t− 1)) (2)

where α is the learning rate and ŵu(t − 1) represents the term wu(t − 1) after global
aggregation.
3© Upload Updated Model:

After completing the local model training, the users upload the local model parameters
wu(t) to the fog computing server, as shown in Figure 2 step 3©. In order to reduce
communication costs and save the upload time, the model can be compressed before being
uploaded to the fog computing server, as the uplink speed is slower than the download
speed [38].
4© Weighted Aggregation:

After uploading their models, the last step is to generate the new global model w(t)
by computing a weighted sum of all received local models wu(t), as shown in Figure 2,
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where t denotes the communication rounds in FL. The new constructed global model is
used for the next training round. The fog server provides the weighted average suggested
in [8], which is expressed as:

w(t) =
∑u∈{1,...,U} |∆u|wu

∑u∈{1,...,U} |∆u|
(3)

where |∆u| indicates the cardinality of ∆u, i.e. the number of elements in ∆u.
The distributed data training of the algorithm proposed above has some advantages

in terms of user privacy and content exchange. In fact, client is trained on local data, which
allows users to protect their sensitive information. In addition, for each round of algorithm
iteration, only a portion of the user set is involved, ensuring reduced messaging between
the client and server. Finally, it should be emphasized that by considering the perspective
of a user device, the gradient descent algorithm is used for optimization without excessive
resource consumption. Therefore, after training a shared global model, each F-APs can
predict local content popularity and then use it for cache content placement.

Cloud

Content Miss

Fog Computing Server

Federated 

Averaging

Demand 

prediction 

Final Model

Local Training Local Training

Content placement

User Device

2

3

4

Figure 2. Federal learning prediction framework.

4. Problem Formulation

In this section, the problem is represented as a joint optimization of content caching
and resource allocation with the objective of minimizing network traffic costs. The storage
allocated for caching at F-AP n is denoted as cn. A binary content cache matrix that is
denoted as X = {xn f |n ∈ N , f ∈ F} indicates whether content f is placed at the local
cache of server n. xn f = 1 if content f is precached in fog server n and xn f = 0 otherwise.
The content popularity in the region is expressed as Pn f , that is, the probability of content f
requested by the user of F-AP n, which can be predicted by using the federated learning
method. Therefore, the problem is formulated as follows:
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min
x,c

F

∑
f=1

N

∑
n=1
{Pn f ·Un · s f [W1xn f + (W1 + W2)(1− xn f )xm f

+ (W1 + W3)(1− xn f )(1− xm f )]}

s.t. C1 :
N

∑
n=1

cn ≤ C

C2 :
F

∑
f=1

xn, f s f ≤ cn, ∀n ∈ N

C3 : xn f ∈ {0, 1}, ∀n ∈ N , ∀ f ∈ F
C4 : xm f ∈ {0, 1}, ∀m ∈ N , ∀ f ∈ F (4)

where the first item of objective function (4) denotes that the content f is cached in the local
F-AP n and constitutes the traffic through the wireless channel between user and F-APs.
The second term indicates that content f is cached in neighbor F-APs m and constitutes
the traffic through the Fog-Fog links and wireless channels. The third item represents
that content f is requested from the cloud computing center and the traffic comes from
the wireless channel and fronthaul links. The constraint C1 means that the cache allocated
in all F-APs should not exceed the storage budget C. The constraint C2 means that all
data in each F-APs should not surpass its storage capacities. The constraints C3 and C4
represent the caching decisions of fog servers in the network. Due to the product term in (4),
the problem is nonlinear and difficult to solve. In this case, we introduce another binary
decision variable zn f to enable zn f = xn f xm f . In order to ensure that the transformed
problem is equivalent to the original problem, the condition C5–C7 needs to be satisfied.
Therefore, the converted problem can be expressed as follows:

min
x,c,z

F

∑
f=1

N

∑
n=1
{Pn f ·Un · s f [(W1 + W3)−W3xn f + (W2 −W3)xm f − (W2 −W3)zn f ]}

s.t. C5 : zn f ≤ xn f , ∀n ∈ N , ∀ f ∈ F
C6 : zn f ≤ xm f , ∀m ∈ N , ∀ f ∈ F
C7 : zn f ≥ xn f + xm f − 1, ∀n, m ∈ N , ∀ f ∈ F (5)

Transformation problem (5) is an integer linear programming (ILP) problem, which
can be solved by exhaustive search algorithm, but with the high computational complexity
and poor system performance. Therefore, two low complexity sub-optimal algorithms are
designed to improve the performance of the system in the next section.

5. Problem Solution

Due to the high complexity of joint optimization problem calculation, in this section,
we propose two sub-optimal heuristic algorithms to solve the problem, which can effec-
tively improve the time efficiency. We decompose the joint optimization problem of storage
allocation and content caching into two sub-problems. We first address the allocation of
storage resources and then use it for the placement of cached content.

5.1. Storage Resource Allocation Problem

For storage allocation problems, storage resources are allocated to each F-APs based
on the total F-APs storage budget. Therefore, the algorithm should be designed according
to the different traffic requirements of F-APs to maximize the utilization of fog server
storage resources. Traffic demand in the network is related to the popularity of the content,
the number of users and the size of the content. For F-APs with high traffic requirements,
more cache storage should be allocated. Therefore, we propose a traffic-based allocation
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algorithm, which allocates storage proportionally according to different traffic requirements.
The Algorithm 1 in detail is shown as follows:

Algorithm 1: Traffic-based allocation Algorithm

Input: Un , Pn f , s f , C;
Output: storage allocation strategy c;

1 Initialize the total F-APs’ traffic Tra = 0;
2 for each F-AP n do
3 Calculate traffic demand Tn;
4 Tn = Pn f s f Un;
5 end
6 Calculate the total F-APs’ traffic Tra;
7 Tra = Tra + Tn;
8 for each F-AP n do
9 cn = Tn

Tra ∗ C;
10 end
11 return c;

5.2. Cache Content Placement Problem

The content placement problem determines which content should be cached on each
F-AP to minimize the traffic costs. Here two heuristics algorithms are proposed to address
the problem of content placement.

5.2.1. Greedy Algorithm based on Global Content Popularity

Due to the importance of content popularity in cache policy design, caching content
with high popularity performs better. Greedy algorithm is adopted to cache as many
popular content as possible on each cache entity. Specifically, the greedy algorithm based
on global content popularity caches the most popular content in each F-APs until reaching
the cache storage capacity limit. Algorithm 2 shows the process in detail. From the practical
perspective, as different F-APs have their own preferences, the shortcoming of this algo-
rithm is that it does not consider the content preference of regional users and the resource
utilization is insufficient.

Algorithm 2: Greedy Algorithm based on Global Content Popularity

Input: N , F , Un , Pf , s f , W1 , W2 , W3 , c;
Output: Traffic cost P , content placement decisions X;

1 for each F-AP n do
2 Use all available storage resources cn;
3 for contents in descending order of content popularity Pf do
4 Cache the most popular content in each F-AP n until the storage capacity is

full;
5 end
6 Get content placement decision xn f ;
7 end
8 xn f is the element of X;
9 Substitute N , F , Un , Pf , s f , W1 , W2 , W3 , c, X into (5) to calculate traffic cost P;

10 return P, X;

5.2.2. Local Popularity Knapsack Algorithm based on Federated Learning

In this section, in order to reduce network traffic, a local popularity knapsack algo-
rithm based on federated learning is proposed. The algorithm considers the local content
popularity of each F-APs and avoids the deficiency of Algorithm 2. Firstly, the content that
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each fog server needs to cache depends on the content popularity Pn f and the content size
s f . Therefore, the content caching decision of fog server n can be expressed as:

max
x

F

∑
f=1

Pn f s f xn f

s.t. C8 :
F

∑
f=1

xn f s f − cn ≤ 0 (6)

where C8 means that all content cached in F-AP n should not exceed its capacity limit.
According to Equation (6), we prefer to cache high popularity and large data length content
in each fog server. It is observed that Equation (6) is a 0–1 knapsack problem [39], where
xn f ∈ [0, 1] is content placement decision, xn f = 1 means fog server n cache content f ,
otherwise xn f = 0, s f is the weight of content item f , cn is the knapsack capacity, and Pn f s f
is the value of each item. Therefore, we can use dynamic programming [39] to solve the 0–1
knapsack problem.

The principle of dynamic programming is to divide the original problem into several
subproblems and solve the subproblems by looking for the recurrence relation between
the original problem and the subproblems, and finally achieve the effect of solving the orig-
inal problem. In order to decompose the original problem into subproblems, a matrix v is
constructed. If the knapsack capacity of the cached content item {1, 2, . . . , f } is j, then v( f , j)
represents the maximum target value that can be obtained. Therefore, the optimal solution
is v(F, cn), and the relationship between the original problem and the subproblem is:

v( f , j) =

{
v( f − 1, j), i f j < s f

max{v( f − 1, j), v( f − 1, j− s f ) + Pn f s f }, otherwise
(7)

If the storage capacity j is less than the size s f of the content item f , the fog server
cannot cache the content. Therefore, we can remove content f in our solution and only con-
sider caching data from {1, 2, . . . , f − 1}, that is v( f , j) = v( f − 1, j). Otherwise, we choose
the optimal one between caching or not caching the data for the content item f . The first
item in curly bracket indicates that the content item f is not cached in F-APs and does
not have any impact on the original problem or take up any storage. The second item
means that the content item f is cached in F-AP, so the Pn f s f value is added to the original
problem and occupies the storage capacity of s f .

Algorithm 3 describes the knapsack algorithm process of local content popularity
based on federated learning. With this algorithm, we can calculate all the entries of v and
trace back the entries of v according to the optimal solution to determine the contents
cached in F-APs n.



Sensors 2021, 21, 215 12 of 20

Algorithm 3: Local Popularity Knapsack Algorithm based on Federated Learning

Input: N , F , Un , Pn f , s f , W1 , W2 , W3 , c;
Output: Traffic cost P , content placement decisions X;

1 for each F-AP n do
2 Initialize v as a (F + 1)× (cn + 1) zero matrix;
3 for f = 1→ F do
4 for j = 1→ cn do
5 if s f > j then
6 v( f + 1, j + 1) = v( f , j + 1);
7 else
8 v( f + 1, j + 1) = max{v( f , j + 1), v( f , j + 1− s f ) + Pn f s f };
9 end

10 end
11 end
12 V = v(F + 1, cn + 1), f = F, j = cn;
13 while V > 0 do
14 while v( f + 1, j + 1) == V do
15 j = j− 1;
16 end
17 f = f + 1;
18 xn f = 1;
19 j = j− s f ;
20 f = f − 1;
21 V = v( f + 1, j + 1);
22 end
23 end
24 xn f is the element of X;
25 Substitute N , F , Un , Pn f , s f , W1 , W2 , W3 , c, X into (5) to calculate traffic cost P;
26 return P, X;

6. Simulation Results

In this section, the experimental results of the proposed algorithms are investigated,
and the performance of three other algorithms, that is Oracle, No Storage Allocation and
Random, are provided as references.

6.1. Simulation Parameters

In our simulation, we set the number of F-APs N = 30. Since more users are sharing
a fronthaul link than a Fog-Fog link in the network, the fronthaul link is more likely
to cause traffic congestion. Therefore, the traffic cost of wireless link, Fog-Fog link and
the fronthaul link are W1, W2 and W3 respectively, where W3 > W2 > W1. According to
the parameters used in [40], in our simulation experiment, the values of W1, W2 and W3

are set to 1, 2, and 4 per MB, respectively. Mobile users are randomly distributed among
different F-APs, where the number of users U = 1000. The average size of content is s f ,
and the actual size of all content in the network is randomly selected from 0.8s f to 1.2s f .
That global content popularity in the network can be represented by Zipf distribution with
β = 0.56, which agrees with the used models in [34]. Since different F-APs have their own
preferences, we represent the probability of user request f in F-AP n as Pn f . Considering
the privacy security of users, federated learning framework is adopted to accurately predict
content popularity in F-APs. The parameters used in the simulation experiment are shown
in Table 3.
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Table 3. Simulation Parameters.

Parameter Name Value

Number of F-APs N = 30

Number of users U = 1000

The traffic cost of wireless link W1 = 1 MB

The traffic cost of Fog-Fog link W2 = 2 MB

The traffic cost of fronthaul link W3 = 4 MB

The total storage budgets of F-APs C = 1500 MB

The average content size s f = 10 MB

Zipf distribution skewness parameter β = 0.56

6.2. Datasets

In our experiment, we used real-world datasets—MovieLens [41]. The MovieLens
dataset contains ratings data for multiple movies by multiple users, as well as movie
metadata information and user attribute information. The MovieLens 1M dataset contained
1,000,209 ratings for 3706 movies participated by 6040 users, while the MovieLens 100K
dataset had 100,000 ratings for 1682 movies from 943 users. Each user reviews at least
20 movies, and the user rating is based on a five-star scale, that is, from 0 to 5. In this paper,
to simulate the process of users requesting content, we assume that the movie participating
in the rating is the content requested by the user, and each movie rating corresponds to
a content download. The paper of [26,42] adopt a similar method to simulate the process
of users requesting content.

6.3. Evaluation and Discussion

The evaluation is based on two different sizes of datasets: MovieLens 1M and 100K.
And the algorithms proposed in this paper are compared with the following three algorithms:

(i) Oracle: The algorithm has a priori knowledge of content popularity and provides
optimal cache performance.

(ii) No storage allocation (NoStrgAlloc): The content popularity follows the Zipf distribu-
tion and does not consider the storage resource allocation of the fog computing server.

(iii) Random: The random algorithm randomly selects F content for caching, which
provides the lowest caching performance.

Figures 3 and 4 depict the cache hit rate (HR) against the number of federated com-
munication rounds with different numbers of participated users. The results indicate that
the more users participated in the learning process, which an accurate result can be trained
to achieve better cache performance. In addition, fewer communication rounds are needed
with more users or larger datasets. Therefore, the model can be updated by increasing
algorithm rounds to improve system performance and make HR reach a higher value.
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Figure 3. Cache hit rate vs communication rounds for datasts of MovieLens 100K.
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Figure 4. Cache hit rate vs communication rounds for datasts of MovieLens 1M.

The performances of GA and FL algorithm under different average content sizes are
evaluated. The total storage capacity of all F-APs in the network is set to C = 1500 MB.
Figures 5 and 6 show the traffic cost with different average content sizes ranging from 6 MB
to 12 MB. As can be seen from Figures 5 and 6, the traffic cost increases with the average
content size. Since the larger the content size is, the more network traffic will be generated.
Oracle algorithms provide the lowest traffic cost because it has a perfect prior knowledge of
future user requirements. The random algorithm has not considered the content popularity
and the allocation of storage resources, thus resulting in the highest traffic cost. The al-
gorithm without considering storage resource allocation in F-APs produces the second
highest traffic cost. FL algorithm performs better than GA because FL considers local
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popularity instead of global popularity, avoiding the disadvantage we discussed earlier
that only considered global popularity.
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Figure 5. Traffic cost vs average content size (MovieLens 100K).
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Figure 6. Traffic cost vs average content size (MovieLens 1M).

In comparing Figure 6 with Figure 5, observe that the performance of FL algorithm
is closer to the Oracle (optimal) when the datasets is 1M rather than 100K, because FL
algorithm has a better training effect when the datasets is larger and can predict the content
popularity more accurately in the region. Due to the limited storage capacity of edge
network nodes, pre-cached popular content can serve more user requests, thus reducing
the network traffic costs effectively.

The storage budget is an important metric that should be considered in designing
caching strategies. Figures 7 and 8 show the relationship between traffic costs and the F-APs
cache budget. We compare the impact of F-AP cache budget C on traffic cost in different
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algorithms, and the average content size is set to 10 MB. In both Figures 7 and 8, it is
observed that the traffic cost decreases with F-APs cache budgets because more popular
content can be cached in F-APs and hence less traffic is incurred to both the fronthaul and
Fog-Fog links. The performance of Oracle algorithm is best, the random algorithm has
the worst performance, and the cache without storage allocation is the second worst. FL
performs better than GA because FL consider local popularity instead of global popularity.
Compared with Figure 7, Figure 8 shows that the more datasets involved in model training,
the better prediction can be achieved and the performance of the proposed algorithm is
closer to the optimal one.
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Figure 7. Traffic cost vs Fog cache budgets (MovieLens 100K).
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Figure 8. Traffic cost vs Fog cache budgets (MovieLens 1M).

Figures 9 and 10 show the relationship between traffic costs and the number of F-APs.
Both figures show that as the number of F-APs increases (from 18 to 30), the cost of traffic
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will decrease. Because the more F-APs there are, the more popular content can be cached
in the local fog server, and the less traffic is injected into the network. The performance
of our proposed FL and GA is superior to the existing random algorithm and no storage
allocation algorithm. Moreover, the performance of FL algorithm is closer to the optimal
one when the training dataset is 1M than that of 100K.
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Figure 9. Traffic cost vs number of Fogs (MovieLens 100K).
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Figure 10. Traffic cost vs number of Fogs (MovieLens 1M).

As is discussed above, the simulation results based on the real-world datasets show
that the more users and datasets participate in the training, the better the prediction effect
of content popularity. Therefore, it can better realize the allocation of storage resources
and the popular content placement in the network, thus reducing the network traffic
cost effectively.
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7. Conclusions and Future Work

In this paper, a federated learning-based intelligent F-RANs cache architecture is
investigated. In the F-RAN architecture, we presented joint optimization of content caching
and resource allocation to minimizing the traffic costs under F-APs storage budget con-
straints. In addition, considering the user’s content request and privacy security, we adopt
federated learning to make a distributed prediction of content popularity in different F-APs
and apply it to the design of cache policy. The proposed caching scheme performs both
efficient cache deployment and content caching. Due to the high computational complex-
ity of the ILP model, and as the size of the problem increases, its scalability is not good.
To reduce the computational complexity, two heuristic algorithms, that is greedy algorithm
and FL algorithm, are introduced to provide approximate optimal solutions with lower
computational complexity. Simulation results based on real-world datasets show that
the proposed algorithm has better performance than existing algorithms and can obtain
approximate optimal solutions.

Although the federated learning paradigm provides an efficient solution for imple-
menting network edge smart caching in F-RANs, some key challenges remain. Due to
the dynamic environment of network, mobile users may go offline or fall behind in the pro-
cess of federated learning, which leads to poor accuracy of the training model. In future
work, we will explore proactive content caching schemes based on fully asynchronous
federated learning to better cope with highly dynamic network environments.
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